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Some concepts in condensed phase chemical kinetics which have emerged from 
a recent rigorous statistical mechanical treatment of condensed phase chemical 
reaction dynamics IS. A. Adelman, Adv. Chem. Phys. 53:61 (1983)] are dis- 
cussed in simple physical terms. 
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1. I N T R O D U C T I O N  

Many-body problems complicate the theoretical treatment of the dynamics 
of chemical processes occurring in solid state, (l/ liquid state, (2~ 
electrochemical, (3~ and biological environments.(4/ 

These problems may of course be successfully attacked by full-scale 
molecular dynamics simulation, t5) There exist, however, general features of 
the condensed phase reaction problem which, if exploited, can lead to 
significant simplifications. 

These simplifications are both calculational and conceptual. From the 
calculational standpoint reactive trajectories may be realistically construc- 
ted as solutions of effective few-body stochastic equations of motion. These 
reduced equations are of substantially smaller dimension than the 
corresponding equations of full molecular dynamics. How these 
calculational reductions may be accomplished has been described in detail 
elsewhere (6~ and selected results of such stochastic dynamics simulations 
will be discussed in Sections 2 and 3. 

Thus I will focus in this talk on conceptual simplifications. These may 
be developed from the same underlying physical features. These sire- 
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plifications permit one, for example, to interpret the solvent dependence of 
widely occurring liquid state processes like photolytic cage escape, (7~ 
vibrational energy relaxation, (s~ and activated barrier crossing (9) in terms 
of changes in solvent cage equilibrium structure. The conceptual sim- 
plifications may be rigorously derived from a detailed statistical mechanical 
theory of condensed phase chemical dynamics, presented elsewhere. (6) I will 
restrict myself here, however, to a brief heuristic development of the sim- 
plifications. 

The conceptual simplifications are developed in Section 2. Some com- 
putational examples which illustrate the concepts are presented in Sec- 
tion 3. 

2. C O N C E P T U A L  B A C K G R O U N D  

The simplifications derive from the fact that condensed phase effects 
on reagent dynamics are dominated by the direct interactions of the 
reagents with their nearest neighbors in the condensed phase environment. 
The indirect second-nearest-neighbor interactions are less important. The 
still more indirect third-nearest-neighbor interactions are even less impor- 
tant, etc. (For systems in which long range forces are important this 
statement must be modified.) 

This physical feature suggests the following rough strategy for sim- 
plifying many-body problems. To obtain a qualitatively realistic description 
of reaction dynamics, treat the influence of only the first nearest neighbors 
on the reagents in detail; model the influence of the environment external 
to these nearest neighbors. To obtain a more precise description treat the 
influence of the first and second nearest neighbors in detail and model the 
external environment, etc. 

This rough strategy has an obvious limitation. It is not strictly speak- 
ing applicable to liquids since the molecular identity of the nearest 
neighbors, second nearest neighbors, etc. is not fixed in liquids. This dif- 
ficulty may be overcome by reformulating the nearest-neighbor strategy in 
the time domain. This time domain formulation, which is developed in 
detail elsewhere (6), leads to an approximate treatment of the 
autocorrelation function ( ~ ( t )  ~ )  of the fluctuating force ~ ( t )  C6) exerted 
by the condensed phase environment on the reagents. The main point is 
that to understand the qualitative features of condensed phase influence on 
reaction dynamics one requires precise knowledge of ( ~ ( t ) ~ ( 0 ) )  only at 
short times. An exact description of the detailed pattern of decay of 
( ~ ( t )  ~ ( 0 ) )  at long times is not required. 

It is often useful to reexpress this statement in terms of the frequency 
spectrum (cosine transform) pF(OO) of the fluctuating force autocorrelation 
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function. The main point is that the short-time-scale behavior of 
(~-(t) ~-(0)) is determined by the low-order spectral moments of p~-(co). 
Thus to understand the main features of environmental influence on reac- 
tion dynamics one requires precise knowledge of only the lowest-order 
moments of pF(OJ). A second key point is that these lowest-order moments 
are relatively simple equilibrium properties of the condensed phase system. 

This observation permits a substantial simplification of the problem of 
interpreting solvent effects on liquid state reactions. For this case the 
lowest-order moments depend on the equilibrium solvent density in the 
vicinity of the reacting solute atoms. Thus to understand the qualitative 
features of solvent influence on reaction dynamics one requires detailed 
knowledge of the local solvent structure but not of the local solvent 
dynamics. 

Within the Kirkwood superposition approximation, the equilibrium 
local solvent density may be constructed from solute-solvent pair 
correlation functions g(r) as described elsewhere. {6} Thus the solvent depen- 
dence of the rates may be interpreted in terms of changes in local solvent 
structure as approximately measured by changes in the pair correlation 
functions. 

To be more specific, we have found elsewhere (6'1~ by detailed 
simulation that only the zeroth and second moments of pF({r a r e  required 
to obtain a qualitatively realistic description of the condensed phase effect 
on prototypical solid (1~ and liquid (n) state processes, These moments are 
proportional to the equilibrium properties <~2> and <~2 >. Thus a model 
for ( ~ ( t ) ~ ( 0 ) )  which exactly reproduces the short-time-scale expansion 

<~(0 ~-(0) > = (y-2> _ �89  t2+ ... (1.1) 

to order t 2 and which decays to zero as t ~ oo is sufficient to realistically 
describe condensed phase influence in these simple systems. These criteria 
for monatomic solvents are conveniently fulfilled by the following Gaussian 
model (6'1~ for the fluctuating force autocorrelation function 

- -  t 2 (1.2) <~(t )  ~ ( 0 ) )  = ( ~ 2 )  exp 2 <.~2) 

I will next briefly indicate how the above concepts permit one to inter- 
pret condensed phase effects on thermal rate constants. For simplicity, I 
will discuss the prototype case of vibrational energy relaxation in 
monatomic liquids. The basic principles are, however, generalizable to 
more complex cases. 

While the interpretation of condensed phase effects on detailed reagent 
dynamics is clearest in the time domain, the interpretation of these effects 
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on thermal rate constants is often facilitated if one moves to a frequency 
domain description. 

This is because the efficiency of dissipation of reagent energy into the 
solvent depends in an extremely sensitive manner on the extent of 
resonance overlap between reagent frequencies relevant to the process of 
interest and on the frequency spectrum pF(CO). (See Figs. 1-4 of Section 3 
for an illustration of this principle.) 

Thus, for example, the rate of liquid state vibrational energy relaxation 
of a solute normal mode with liquid state frequency COo increases rapidly 
with the magnitude of pF((2)0). 

Within the Gaussian model of Eq. (1.2) the frequency spectrum takes 
the form 

One may show (12) the Gaussian frequency spectrum, modified to include a 
correction from the "tail" of ( ~ ( t ) ~ ( 0 ) ) ,  is exact as co--* oe for 
monatomic solvents. Since the solute vibrational frequency COo typically 
overlaps the wings of the spectrum pF(CO) for monatomic solvents, the 
modified Gaussian model may be used with little error even if the true 
frequency spectrum is complex except in the wings. 

The proceeding discussion may be succinctly summarized as follows. 
To realistically describe the condensed phase effect on reagent trajectories 
one requires precise information about ( ~ ( t ) ~ ( 0 ) )  only at short times. 
To realistically describe the condensed phase effect on reagent rate con- 
stants one often requires precise information about pF(09) only at high fre- 
quencies. Because of these simplifications, the solvent variation of both tra- 
jectories and rate constants may be understood in terms of changes in local 
equilibrium solvent structure. 

I next want to shift the focus slightly and describe in more detail how 
the equilibrium solvent cage actually influences reaction dynamics. The 
brief discussion of vibrational energy relaxation in liquids just provided 
indicates that energy dissipation effects play a basic role in condensed 
phase kinetics. 

To obtain a complete understanding of the condensed phase effect on 
reaction dynamics one must also consider cage effects. It is the interplay 
between cage and dissipation effects which give condensed phase reagent 
motion its unique qualitative character. I will next discuss the distinction 
between cage and dissipation effects for the case of liquid state processes. 
With slight modification the discussion may be extended to solid state 
chemical phenomena. 
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The theoretical basis (6) for separating condensed phase effects into 
cage and dissipation contributions lies in the fact that the average solvent 
force exerted on the reagents may be decomposed into three distinct con- 
tributions. These are as follows: 

2.1. The Mean Force ( ~ )  

The mean force is the average solvent force exerted on infinitely slowly 
moving reagents. For this hypothetical case, the average local solvent den- 
sity can perfectly follow the solute motion. If only the mean force were 
present, the reagents would execute gas-phase-like trajectories but on a 
potential energy surface modified for liquid state effects. 

Real condensed phase trajectories, however, differ profoundly (6'1~ 
from gas phase trajectories because of the instantaneous and delayed cage 
restoring forces. These correct for the fact that the average local solvent 
density cannot perfectly follow the reagents moving at a finite rate. 

We next discuss the instantaneous and delayed cage restoring forces. 

2.2. The Instantaneous Cage Restoring Force 

The cage effect contribution to solvent influence is governed by the 
instantaneous cage restoring force. While this force is a general feature of 
condensed phase motion (it importantly influences, for example, activated 
barrier crossing(l~ its nature is most easily explained in the context of 
photolytic cage escape. We will consider as a prototypical example iodine 
photolysis in simple solvents (see Figs. 5 and 6 of Section 3). 

The iodine molecule is photoexcited from the ground X state and 
makes a Franck-Condon transition and eventually arrives on. The iodine 
atoms then separate with a relative velocity v. If v is sufficiently large the 
iodine atoms hit the solvent cage and rebound before the cage has time to 
relax in response to the displacement of the atoms from equilibrium. The 
instantaneous cage restoring force is the force responsible for this rebound. 

The instantaneous cage restoring force is proportional to ~ 2  ~. Thus, 
as expected, it depends on the shortest time scale aspects of the dynamic 
solvent response. It is often convenient to characterize the strength of the 
instantaneous cage restoring force by the magnitude of a cage oscillation 
frequency toe0 defined elsewhere. (6~ The cage oscillation frequency is propor- 
tional to [(~2)]1/2. 
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2.3. The Delayed Cage Restoring Force 

The dissipative solvent effects are governed by the delayed cage restor- 
ing force. The nature of this force is easy to understand. 

Briefly stated, if the solvent cage were rigid it would exert a conser- 
vative force on the solute which is a superposition of the mean force and 
the instantaneous cage restoring force. The delayed cage restoring force 
corrects this conservative force for the effects of cage relaxation. It thus 
accounts for the effects of cage nonrigidity and hence reagent solvent 
energy exchange. 

I next want to briefly and qualitatively indicate how the interplay 
between cage effects and dissipation effects influence reaction dynamics in 
liquids. Detailed discussions of this interplay are given elsewhere/1~ in 
the context of stochastic dynamics simulations. A synopsis of some of these 
simulations, which amplifies the present discussion, is given in Section 3. 
Analytical treatments of thermal rate constants based on these same ideas 
will shortly be presented elsewhere. 

Most adiabatic liquid state chemical reactions may be conceptually 
decomposed into no more than three elementary processes. Consider, for 
example, the liquid state atom transfer reaction 

A + B-C-~ A-B + C  

Once the commonly caged encounter complex AB C is formed via 
"squeeze-out" of solvent molecules the reaction may be decomposed into 
three elementary processes as follows. 

(i) An activated barrier crossing of the commonly caged complex 
taking it from the AB C reactant state to a commonly caged vibrationally 
"hot" A-B*C product state. 

(ii) Commonly cage breakup to form a solvent separated A B* + C 
product state. 

(iii) Vibrational thermalization of the "hot" product A-B* to form a 
stabilized product A-B. 

The common cage breakup process (step ii) is ultrafast and is thus 
cage effect dominated. That is the breakout probability is strongly depen- 
dent on the cage oscillation frequency ~oe0 but only weakly dependent on 
detailed form of pF(CO). 

The vibrational thermalization process (step iii) is dissipation 
dominated. That is, as indicated above, the rate of vibrational ther- 
malization is strongly dependent o n  pF((O0). Cage effects do, however, play 
a role since the liquid state vibrational frequency ~o o is the sum of a con- 
tribution from the mean force ( F )  and a contribution from the instan- 
taneous cage restoring force. 
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The activated barrier crossing process (step i) involves a subtle inter- 
play between cage and dissipation effects. This interplay has been described 
in detail elsewhere (m. Briefly stated, the cage effect enters because the 
barrier crossing step AB C ---, A-BC may be reversed in the following man- 
ner. Immediately after barrier crossing newly formed hot C can rebound off 
the cage and recollide with nascent product A-B to reform A BC. The 
importance of this "whipback" effect increases with the magnitude of the 
cage oscillation frequency e)e0. The dissipation effect enters through a 
mechanism similar to the familiar Kramers mechanism. (~3/In the Kramers 
theory, however, dissipation is described by the reaction coordinate friction 
coefficient which is proportional to pg(O.)=0). In the treatment presented 
elsewhere dissipation is described by /0F(O ) evaluated at a frequency which 
is characteristic of reaction coordinate motion in the liquid. 

In order to provide concrete illustrations of the concepts discussed in 
this section, we next present a synopsis of stochastic dynamics studies of 
the cage breakup and vibrational thermalization elementary processes. (1l) 
An analogous study of the activated barrier crossing elementary process 
which emphasizes the interplay between reaction coordinate "whipback" 
and frequency-dependent dissipation is available elsewhere. (~~ 

3. I O D I N E  P H O T O D I S S O C I A T I O N - R E C O M B I N A T I O N  IN 
S I M P L E  S O L V E N T S  

In order to study the vibrational thermalization and cage escape 
processes, I next present some results of a stochastic dynamics study/12~ of 
the photodissociation and subsequent geminate recombination of 
molecular iodine present at infinite dilution in model Lennard Jones 
solvents. 

To illustrate the concepts discussed in Section 2, I will compare 
stochastic dynamics studies which are based on a generalized Langevin 
equation of motion ~6) which realistically describes short-time-scale 
dynamics with corresponding Langevin equation stochastic dynamics 
results. The Langevin equation is based on the assumption that the fluc- 
tuating force autocorrelation function is ~i correlated [cf. Eq. (1.2)] or that 
equivalently the spectrum pF((D) is independent of frequency [cf. 
Eq. (1.3)1. Thus the chemically important short-time-scale and high-fre- 
quency dynamics are not realistically described by the Langevin model. 

The details of the systems, simulation methods, and numerical 
methods for constructing the stochastic equations of motion have been dis- 
cussed in detail elsewhere. (m Thus I will pass directly to the results. 
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3.1. V ib ra t iona l  T h e r m a l i z a t i o n  of  Nascent  12 Products  

I will first discuss the liquid state vibrational thermalization of nascent 
I2 products formed near the dissociation limit of the ground X state. 
Vibrational thermalization profiles computed for a model Lennard-Jones 
solvent designed to simulate liquid carbon tetrachloride are plotted in 
Figs. 1 and 2. Figure 1 presents results based on the stochastic equation of 
motion (6) which realistically describes short-time-scale dynamics and Fig. 2 
presents corresponding results based on a Langevin equation of 'motion. 
Plotted is the probability P [  V, t] that an iodine molecule is in vibrational 
state V at time t conditional that it is in a state V~95 at t = 0 .  

The results of Fig. 1 show a rapid picosecond time scale relaxation to 
V~ 60. Relaxation then "stagnates." Vibrational thermalization is estimated 
to occur on a much longer than picosecond timescale. The Langevin model 
results of Fig. 2 are qualitatively different. These show no "stagnation" 
effect but rather predict picosecond time scale thermalization of vibrational 
energy. 

These results are readily understood using the concepts introduced in 
Section 2 if one additionally accounts for the fact that the effective 
vibrational frequency of the iodine molecule depends on its vibrational 
quantum number V, i.e., co o = coo(V). 

0 . 0  

0 100 
V 

Fig. 1. Probability P[V, t] that recombining 12 molecules are in vibrational state Va t  time t 
in psec for model carbon tetrachloride solvent according to realistic stochastic dynamics. 
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Fig. 2. 
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Same as Fig. 1 except for Langevin stochastic dynamics. 

100 

As the iodine molecule relaxes vibrationally the effective frequency 
coo(V) increases from small values near V= 95 to the fundamental V= 0 
value of 215 cm 1. Because of the Gaussian fall-off of the realistic ,OF(O), 
Eq. (1.3), relaxation "stagnates" when coo(V) becomes substantially greater 
than the width of the frequency spectrum [ ~ c ~ 2 ) / ~ 2 ) ]  1/2 and thus has 
only a small overlap with PF(CO)' The Langevin model OF(CO), in contrast, is 
independent of frequency. Hence Langevin dynamics unrealistically 
predicts no stagnation effect. 

Since [ ( ~ 2 ) / ( ~ 2 ) ] 1 / 2  depends on the local equilibrium solvent 
structure one expects the vibrational thermalization profile and, in par- 
ticular, the stagnation point to be strongly solvent dependent. That this is 
the case may be seen from the vibrational thermalization profiles for 12 
relaxation in model Lennard-Jones solvents designed to simulate liquid 
ethane and dense gaseous ethane. These are plotted in Figs. 3 and 4. 

3.2. Cage Escape Dynamics of Photoexci ted Molecu la r  Iodine 

We next discuss the cage escape step of the iodine photolysis process. 
The probability P[R, t] that the iodine atoms are at internuclear 
separation R at time t on the repulsive lu state is plotted in Fig. 5 for 
Langevin stochastic dynamics and in Fig. 6 for realistic stochastic 
dynamics. 

Static solvent effects, i.e., arising from the mean force, are treated iden- 
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Fig. 3. Same as Fig. ! except for liquid ethane model solvent. 
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Fig. 4. Same as Fig. 1 except for dense gaseous ethane model solvent. 
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Fig. 5. Cage escape dynamics of I2 in model carbon tetrachloride solvent as calculated by 
Langevin stochastic dynamics. P[R, t], t in psec, is the probability that the iodine atoms are 
separated by a distance R at time I in the dissociative lu excited state. 

Fig. 6. 

~. 1.0-] 

~ O . 5  

O.0 

t 

0.0 7.O 14.0 
R 

Same as Fig. 5 except calculations are based on realistic stochastic dynamics as 
described in Ref. 11. 

822/'42,' 1-2-4 
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tically within both stochastic models. The lu potential of mean force W(R) 
has a slight attractive well due to liquid state packing effects. The Langevin 
stochastic dynamics results of Fig. 5 show that this weak static cage effect 
is insufficient to confine the iodine atoms to the common cage. Rather they 
smoothly diffuse out of the common cage. 

The results of realistic stochastic dynamics show clear cage boundaries 
and the formation of solvent-separated iodine atoms pairs. The formation 
of this structure is governed by the strong instantaneous cage restoring 
forces ~ co2 0 missing in the Langevin description. 
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